Cyclic-AMP-induced elevation of intracellular pH precedes, but does not mediate, the induction of prespore differentiation in Dictyostelium discoideum.

نویسندگان

  • M M Van Lookeren Campagne
  • R J Aerts
  • W Spek
  • R A Firtel
  • P Schaap
چکیده

Prespore gene expression in Dictyostelium is induced by the interaction of cAMP with cell surface cAMP receptors. We investigated whether intracellular pH (pHi) changes mediate the induction of prespore gene expression by cAMP. It was found that cAMP induces a 0.15 unit increase in pHi within 45 min after stimulation. The cAMP-induced pHi increase precedes the induction of prespore gene expression, measured by in vitro transcription, by about 15-30 min. Cyclic-AMP-induced pHi changes can be bypassed or clamped by addition of, respectively, the weak base methylamine, which increases pHi, or the weak acid 5,5-dimethyl-2,4-oxazolidinedione (DMO), which decreases pHi. Bypass of the cAMP-induced increase of pHi with methylamine does not induce the expression of prespore genes, while inhibition of the pHi increase with DMO does not inhibit the induction of prespore gene expression. Cyclic-AMP-induced prespore protein synthesis and the proportion of prespore cells in multicellular aggregates are also not affected by bypassing or inhibiting the cAMP-induced pHi increase. These results show that although a morphogen-induced pHi increase precedes the induction of prespore gene expression, this increase does not mediate the effects of the extracellular cAMP signal on the transcription or translation of prespore genes in Dictyostelium discoideum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic AMP-phosphodiesterase induces dedifferentiation of prespore cells in Dictyostelium discoideum slugs: evidence that cyclic AMP is the morphogenetic signal for prespore differentiation

We investigated whether cyclic AMP is an essential extracellular stimulus for the differentiation of prespore cells in slugs of D. discoideum. A local reduction of the extracellular cAMP level inside the slug was induced by implantation of cAMP-phosphodiesterase (cAMP-PDE)-coated spheres in intact slugs. This treatment caused the disappearance of prespore antigen in the vicinity of the sphere. ...

متن کامل

Effects of cyclic AMP on contact formation and differentiation in Dictyostelium discoideum.

It has been shown previously that Dictyostelium discoideum NC4 cells dissociated at the early aggregation stage form cell clumps and differentiate into prespore cells in a shaking culture containing glucose, albumin, EDTA and cyclic AMP. In this culture system, we found that the cells neither differentiate nor form cell clumps in the absence of cyclic AMP. Wheat-germ agglutinin (WGA) completely...

متن کامل

Functional promiscuity of gene regulation by serpentine receptors in Dictyostelium discoideum.

Serpentine receptors such as smoothened and frizzled play important roles in cell fate determination during animal development. In Dictyostelium discoideum, four serpentine cyclic AMP (cAMP) receptors (cARs) regulate expression of multiple classes of developmental genes. To understand their function, it is essential to know whether each cAR is coupled to a specific gene regulatory pathway or wh...

متن کامل

From Drought Sensing to Developmental Control: Evolution of Cyclic AMP Signaling in Social Amoebas

Amoebas and other protists commonly encyst when faced with environmental stress. Although little is known of the signaling pathways that mediate encystation, the analogous process of spore formation in dictyostelid social amoebas is better understood. In Dictyostelium discoideum, secreted cyclic AMP (cAMP) mediates the aggregation of starving amoebas and induces the differentiation of prespore ...

متن کامل

A model for pattern formation in Dictyostelium discoideum

tions in the mound stage of the cellular slime mold Dictyostelium discoideum has been developed. The model is based on current information about morphogenetic signaling that controls the differentiation of prestalk and prespore cells from differentiation-competent cells. The morphogens that can control the cell-type transitions are: (i) cAMP, which is required for both prestalk and prespore dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 105 2  شماره 

صفحات  -

تاریخ انتشار 1989